
1	

	

HACC	
 I/O	
 Benchmark	
 Summary	

Summary	
 Version	

1.0	

	

Purpose	
 of	
 Benchmark	

The purpose of this benchmark is to evaluate the performance of the I/O system for the Hardware
Accelerated Cosmology Code (HACC) simulation. The HACC framework uses N-body techniques to
simulate the formation of structure in collisionless fluids under the influence of gravity in an expanding
universe.
	

Characteristics	
 of	
 Benchmark	
 	

The HACC I/O benchmark capture the I/O patterns of the HACC simulation code. This includes the
checkpoint and restarts as well as the analysis outputs produced by the simulation. It also captures the
various I/O interfaces used in HACC, namely, POSIX I/O, MPI Collective I/O and MPI Independent I/O.
Additionally, the benchmark can either write out a single shared file, file per process, and a file per group
of processes (partition).

Mechanics	
 of	
 Building	
 Benchmark	

	

The HACC I/O code is an MPI-only code. There is a makefile to build the benchmark. It relies on POSIX
and MPI-IO.

Offeror may modify the RestartIO_GLEAN.cxx file to customize the __initalizePartitionInfo function for
their I/O platform. A generic partitioning mechanism is included.

Mechanics	
 of	
 Running	
 Benchmark	

	

The benchmark takes in a number of command line parameters. These include the number of particles per
rank, the type of I/O mechanism to be used (POSIX, MPI-IO – both collective and independent I/O), and
filename.

Example runs:

Small problem: Representative of the analysis outputs
Particle data will need ~2% of the entire system memory

Medium problem:
Particle data will need ~10% of the entire system memory

Large problem:
Particle data will need ~60% of the entire system memory

CORAL class problem:
Particle data will need ~60% of the entire system memory
	

2	

	

Verification	
 of	
 Results	

The benchmark has capabilities to validate the I/O. A known data pattern is written out as a checkpoint.
This is read back in and verified with the known pattern.

